
Package index
-
model_smimodel()
- Sparse Multiple Index (SMI) Models
-
greedy_smimodel()
- SMI model estimation through a greedy search for penalty parameters
-
model_backward()
- Nonparametric Additive Model with Backward Elimination
-
model_gaim()
- Groupwise Additive Index Models (GAIM)
-
model_ppr()
- Projection Pursuit Regression (PPR) models
-
model_gam()
- Generalised Additive Models
-
model_lm()
- Linear Regression models
-
augment(<smimodel>)
- Augment function for class
smimodel
-
augment(<backward>)
- Augment function for class
backward
-
augment(<gaimFit>)
- Augment function for class
gaimFit
-
augment(<pprFit>)
- Augment function for class
pprFit
-
augment(<gamFit>)
- Augment function for class
gamFit
-
augment(<lmFit>)
- Augment function for class
lmFit
-
predict(<smimodel>)
- Obtaining forecasts on a test set from a fitted
smimodel
-
predict(<backward>)
- Obtaining forecasts on a test set from a fitted
backward
-
predict(<gaimFit>)
- Obtaining forecasts on a test set from a fitted
gaimFit
-
predict(<pprFit>)
- Obtaining forecasts on a test set from a fitted
pprFit
-
predict(<gamFit>)
- Obtaining forecasts on a test set from a fitted
gamFit
-
predict(<lmFit>)
- Obtaining forecasts on a test set from a fitted
lmFit
-
predict(<cgaim>)
- Predictions from a fitted CGAIM object - copied from cgaim:::predict.cgaim() and modified
-
MSE()
MAE()
point_measures
- Point estimate accuracy measures
Prediction Intervals
Functions to construct and evaluate prediction intervals in time series forecasting problems.
-
bb_cvforecast()
- Single season block bootstrap prediction intervals through time series cross-validation forecasting
-
cb_cvforecast()
- Conformal bootstrap prediction intervals through time series cross-validation forecasting
-
avgCoverage()
- Calculate interval forecast coverage
-
avgWidth()
- Calculate interval forecast width
-
autoplot(<smimodel>)
- Plot estimated smooths from a fitted
smimodel
-
residuals(<smimodel>)
- Extract residuals from a fitted
smimodel
-
lag_matrix()
- Function for adding lags of time series variables
-
print(<smimodel>)
- Printing a
smimodel
object
-
print(<smimodelFit>)
- Printing a
smimodelFit
object
-
print(<backward>)
- Printing a
backward
object
-
print(<gaimFit>)
- Printing a
gaimFit
object
-
print(<pprFit>)
- Printing a
pprFit
object
-
forecast(<smimodel>)
- Forecasting using SMI models
-
forecast(<backward>)
- Forecasting using nonparametric additive models with backward elimination
-
forecast(<gaimFit>)
- Forecasting using GAIMs
-
forecast(<pprFit>)
- Forecasting using PPR models
-
forecast(<gamFit>)
- Forecasting using GAMs
-
leadlagMat()
- Create lags or leads of a matrix
-
smimodel.fit()
- SMI model estimation
-
new_smimodelFit()
- Constructor function for the class
smimodelFit
-
update_smimodelFit()
- Updating a
smimodelFit
-
make_smimodelFit()
- Converting a fitted
gam
object to asmimodelFit
object
-
inner_update()
- Updating index coefficients and non-linear functions iteratively
-
init_alpha()
- Initialising index coefficients
-
update_alpha()
- Updating index coefficients using MIP
-
greedy.fit()
- Greedy search for tuning penalty parameters
-
tune_smimodel()
- SMI model with a given penalty parameter combination
-
normalise_alpha()
- Scaling index coefficient vectors to have unit norm
-
loss()
- Calculating the loss of the MIP used to estimate a SMI model
-
allpred_index()
- Constructing index coefficient vectors with all predictors in each index
-
split_index()
- Splitting predictors into multiple indices
-
scaling()
- Scale data
-
unscaling()
- Unscale a fitted
smimodel
-
augment(<smimodelFit>)
- Augment function for class
smimodelFit
-
predict(<smimodelFit>)
- Obtaining forecasts on a test set from a
smimodelFit
-
predict_gam()
- Obtaining recursive forecasts on a test set from a fitted
mgcv::gam
-
eliminate()
- Eliminate a variable and fit a nonparametric additive model
-
blockBootstrap()
- Futures through single season block bootstrapping
-
residBootstrap()
- Generate multiple single season block bootstrap series
-
seasonBootstrap()
- Single season block bootstrap
-
randomBlock()
- Randomly sampling a block
-
possibleFutures_smimodel()
- Possible future sample paths (multi-step) from
smimodel
residuals
-
possibleFutures_benchmark()
- Possible future sample paths (multi-step) from residuals of a fitted benchmark model
-
prep_newdata()
- Prepare a data set for recursive forecasting
-
remove_lags()
- Remove actual values from a data set for recursive forecasting
-
truncate_vars()
- Truncating predictors to be in the in-sample range
-
smimodel
smimodel-package
- smimodel: Sparse Multiple Index (SMI) Models for High-dimensional Nonparametric Forecasting