Skip to contents

Estimating SMI model

Functions to estimate a SMI model with or without penalty parameter tuning.

model_smimodel()
Sparse Multiple Index (SMI) Models
greedy_smimodel()
SMI model estimation through a greedy search for penalty parameters

Estimating other benchmark models

Functions to fit some benchmark comparison methods.

model_backward()
Nonparametric Additive Model with Backward Elimination
model_gaim()
Groupwise Additive Index Models (GAIM)
model_ppr()
Projection Pursuit Regression (PPR) models
model_gam()
Generalised Additive Models
model_lm()
Linear Regression models

Augment methods

Obtain residuals and fitted values of the fitted models.

augment(<smimodel>)
Augment function for class smimodel
augment(<backward>)
Augment function for class backward
augment(<gaimFit>)
Augment function for class gaimFit
augment(<pprFit>)
Augment function for class pprFit
augment(<gamFit>)
Augment function for class gamFit
augment(<lmFit>)
Augment function for class lmFit

Predict methods

Obtain residuals and fitted values of the fitted models.

predict(<smimodel>)
Obtaining forecasts on a test set from a fitted smimodel
predict(<backward>)
Obtaining forecasts on a test set from a fitted backward
predict(<gaimFit>)
Obtaining forecasts on a test set from a fitted gaimFit
predict(<pprFit>)
Obtaining forecasts on a test set from a fitted pprFit
predict(<gamFit>)
Obtaining forecasts on a test set from a fitted gamFit
predict(<lmFit>)
Obtaining forecasts on a test set from a fitted lmFit
predict(<cgaim>)
Predictions from a fitted CGAIM object - copied from cgaim:::predict.cgaim() and modified

Point estimate accuracy measures

Calculate point estimate accuracy measures.

MSE() MAE() point_measures
Point estimate accuracy measures

Prediction Intervals

Functions to construct and evaluate prediction intervals in time series forecasting problems.

bb_cvforecast()
Single season block bootstrap prediction intervals through time series cross-validation forecasting
cb_cvforecast()
Conformal bootstrap prediction intervals through time series cross-validation forecasting
avgCoverage()
Calculate interval forecast coverage
avgWidth()
Calculate interval forecast width

Other user-facing functions

Other exported functions that can be called by users.

autoplot(<smimodel>)
Plot estimated smooths from a fitted smimodel
residuals(<smimodel>)
Extract residuals from a fitted smimodel
lag_matrix()
Function for adding lags of time series variables
print(<smimodel>)
Printing a smimodel object
print(<smimodelFit>)
Printing a smimodelFit object
print(<backward>)
Printing a backward object
print(<gaimFit>)
Printing a gaimFit object
print(<pprFit>)
Printing a pprFit object
forecast(<smimodel>)
Forecasting using SMI models
forecast(<backward>)
Forecasting using nonparametric additive models with backward elimination
forecast(<gaimFit>)
Forecasting using GAIMs
forecast(<pprFit>)
Forecasting using PPR models
forecast(<gamFit>)
Forecasting using GAMs
leadlagMat()
Create lags or leads of a matrix

Other non-user-facing functions

Other internal functions that are not exported.

smimodel.fit()
SMI model estimation
new_smimodelFit()
Constructor function for the class smimodelFit
update_smimodelFit()
Updating a smimodelFit
make_smimodelFit()
Converting a fitted gam object to a smimodelFit object
inner_update()
Updating index coefficients and non-linear functions iteratively
init_alpha()
Initialising index coefficients
update_alpha()
Updating index coefficients using MIP
greedy.fit()
Greedy search for tuning penalty parameters
tune_smimodel()
SMI model with a given penalty parameter combination
normalise_alpha()
Scaling index coefficient vectors to have unit norm
loss()
Calculating the loss of the MIP used to estimate a SMI model
allpred_index()
Constructing index coefficient vectors with all predictors in each index
split_index()
Splitting predictors into multiple indices
scaling()
Scale data
unscaling()
Unscale a fitted smimodel
augment(<smimodelFit>)
Augment function for class smimodelFit
predict(<smimodelFit>)
Obtaining forecasts on a test set from a smimodelFit
predict_gam()
Obtaining recursive forecasts on a test set from a fitted mgcv::gam
eliminate()
Eliminate a variable and fit a nonparametric additive model
blockBootstrap()
Futures through single season block bootstrapping
residBootstrap()
Generate multiple single season block bootstrap series
seasonBootstrap()
Single season block bootstrap
randomBlock()
Randomly sampling a block
possibleFutures_smimodel()
Possible future sample paths (multi-step) from smimodel residuals
possibleFutures_benchmark()
Possible future sample paths (multi-step) from residuals of a fitted benchmark model
prep_newdata()
Prepare a data set for recursive forecasting
remove_lags()
Remove actual values from a data set for recursive forecasting
truncate_vars()
Truncating predictors to be in the in-sample range

Package metadata

Package information.

smimodel smimodel-package
smimodel: Sparse Multiple Index (SMI) Models for High-dimensional Nonparametric Forecasting